Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473739

RESUMO

A healthy vaginal microbiota hosts Lactobacillus as the most predominant genus. Lactobacilli play a role in human health through the production of diverse antimicrobial substances that can act against human pathogens or modulate the immune system. Previous reports highlighted the ability of vaginal lactobacilli to counteract viruses causing STIs, e.g., HIV-1 and HSV-2. In this report, we analyze the activity of supernatants of vaginal lactobacilli against HSV-1 infection, which is becoming increasingly relevant as a STI. We show that the supernatants of two vaginal Lactobacillus species (i.e., L. crispatus and L. gasseri) were active at neutralizing HSV-1 infection in two different cell lines of human and simian origin. Specifically, we demonstrate that L. crispatus strains are the most effective in antiviral activity, as evidenced by the comparison with a vaginal pathogen taken as reference. The effect was specific and not attributable to the generic toxicity of the supernatants to the cells. Our results pave the way for the development of probiotics to limit the impact of HSV-1 infection on women's health.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Feminino , Humanos , Lactobacillus , Vagina , Técnicas de Cultura de Células
2.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069111

RESUMO

This Special Issue highlights multiple facets of virus engineering, ranging from the dissection of the biological properties of individual viral functions in the context of safe genomic backbones, virus genetic modification for applications in gene therapy, oncolytic virotherapy and vaccine production, to the hurdles presented by quality control and the delivery of viruses for their final applications and finally to the simulation, prediction and validation of virus evolution [...].


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Terapia Genética , Neoplasias/genética , Engenharia Genética
3.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139207

RESUMO

Oncolytic viruses (OVs) are the frontier therapy for refractory cancers, especially in integration with immunomodulation strategies. In cancer immunovirotherapy, the many available "omics" and systems biology technologies generate at a fast pace a challenging huge amount of data, where apparently clashing information mirrors the complexity of individual clinical situations and OV used. In this review, we present and discuss how currently big data analysis, on one hand and, on the other, simulation, modeling, and computational technologies, provide invaluable support to interpret and integrate "omic" information and drive novel synthetic biology and personalized OV engineering approaches for effective immunovirotherapy. Altogether, these tools, possibly aided in the future by artificial intelligence as well, will allow for the blending of the information into OV recombinants able to achieve tumor clearance in a patient-tailored way. Various endeavors to the envisioned "synthesis" of turning OVs into personalized theranostic agents are presented.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Inteligência Artificial , Vírus Oncolíticos/genética , Tecnologia , Big Data , Simulação por Computador
4.
J Pathol Inform ; 14: 100332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705689

RESUMO

Computational pathology can significantly benefit from ontologies to standardize the employed nomenclature and help with knowledge extraction processes for high-quality annotated image datasets. The end goal is to reach a shared model for digital pathology to overcome data variability and integration problems. Indeed, data annotation in such a specific domain is still an unsolved challenge and datasets cannot be steadily reused in diverse contexts due to heterogeneity issues of the adopted labels, multilingualism, and different clinical practices. Material and methods: This paper presents the ExaMode ontology, modeling the histopathology process by considering 3 key cancer diseases (colon, cervical, and lung tumors) and celiac disease. The ExaMode ontology has been designed bottom-up in an iterative fashion with continuous feedback and validation from pathologists and clinicians. The ontology is organized into 5 semantic areas that defines an ontological template to model any disease of interest in histopathology. Results: The ExaMode ontology is currently being used as a common semantic layer in: (i) an entity linking tool for the automatic annotation of medical records; (ii) a web-based collaborative annotation tool for histopathology text reports; and (iii) a software platform for building holistic solutions integrating multimodal histopathology data. Discussion: The ontology ExaMode is a key means to store data in a graph database according to the RDF data model. The creation of an RDF dataset can help develop more accurate algorithms for image analysis, especially in the field of digital pathology. This approach allows for seamless data integration and a unified query access point, from which we can extract relevant clinical insights about the considered diseases using SPARQL queries.

5.
Database (Oxford) ; 20232023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37768281

RESUMO

Cancer prevention is one of the most pressing challenges that public health needs to face. In this regard, data-driven research is central to assist medical solutions targeting cancer. To fully harness the power of data-driven research, it is imperative to have well-organized machine-readable facts into a knowledge base (KB). Motivated by this urgent need, we introduce the Collaborative Oriented Relation Extraction (CORE) system for building KBs with limited manual annotations. CORE is based on the combination of distant supervision and active learning paradigms and offers a seamless, transparent, modular architecture equipped for large-scale processing. We focus on precision medicine and build the largest KB on 'fine-grained' gene expression-cancer associations-a key to complement and validate experimental data for cancer research. We show the robustness of CORE and discuss the usefulness of the provided KB. Database URL https://zenodo.org/record/7577127.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Bases de Dados Factuais , Bases de Conhecimento , Medicina de Precisão , Expressão Gênica
6.
Viruses ; 13(9)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34578259

RESUMO

Glioblastoma is a lethal primary brain tumor lacking effective therapy. The secluded onset site, combined with the infiltrative properties of this tumor, require novel targeted therapies. In this scenario, the use of oncolytic viruses retargeted to glioblastoma cells and able to spread across the tumor cells represent an intriguing treatment strategy. Here, we tested the specificity, safety and efficacy of R-613, the first oncolytic HSV fully retargeted to EGFRvIII, a variant of the epidermal growth factor receptor carrying a mutation typically found in glioblastoma. An early treatment with R-613 on orthotopically transplanted EGFRvIII-expressing human glioblastoma significantly increased the median survival time of mice. In this setting, the growth of human glioblastoma xenotransplants was monitored by a secreted luciferase reporter and showed that R-613 is able to substantially delay the development of the tumor masses. When administered as late treatment to a well-established glioblastomas, R-613 appeared to be less effective. Notably the uninfected tumor cells derived from the explanted tumor masses were still susceptible to R-613 infection ex vivo, thus suggesting that multiple treatments could enhance R-613 therapeutic efficacy, making R-613 a promising oncolytic HSV candidate for glioblastoma treatment.


Assuntos
Receptores ErbB/genética , Glioblastoma/terapia , Herpesvirus Humano 1/fisiologia , Terapia Viral Oncolítica/métodos , Terapia Viral Oncolítica/normas , Vírus Oncolíticos/fisiologia , Transplante Heterólogo , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Vetores Genéticos , Humanos , Camundongos , Camundongos SCID , Mutação , Células Vero , Replicação Viral
7.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167582

RESUMO

Oncolytic viruses are smart therapeutics against cancer due to their potential to replicate and produce the needed therapeutic dose in the tumor, and to their ability to self-exhaust upon tumor clearance. Oncolytic virotherapy strategies based on the herpes simplex virus are reaching their thirties, and a wide variety of approaches has been envisioned and tested in many different models, and on a range of tumor targets. This huge effort has culminated in the primacy of an oncolytic HSV (oHSV) being the first oncolytic virus to be approved by the FDA and EMA for clinical use, for the treatment of advanced melanoma. The path has just been opened; many more cancer types with poor prognosis await effective and innovative therapies, and oHSVs could provide a promising solution, especially as combination therapies and immunovirotherapies. In this review, we analyze the most recent advances in this field, and try to envision the future ahead of oHSVs.


Assuntos
Terapia Viral Oncolítica/métodos , Simplexvirus/metabolismo , Terapia Combinada/métodos , Terapia Combinada/tendências , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Terapia Viral Oncolítica/tendências , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo , Simplexvirus/genética
8.
Methods Mol Biol ; 2060: 131-151, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31617176

RESUMO

Since the cloning of the herpes simplex virus (HSV) genome as BAC (bacterial artificial chromosome), the genetic engineering of the viral genome has become readily feasible. The advantage is that the modification of the animal virus genome is carried out in bacteria, with no replication or production of viral progeny, and is separated from the reconstitution or regeneration of the recombinant virus in mammalian cells. This allows an easy engineering of essential genes, as well. Many technologies have been developed for herpesvirus BAC engineering. In our hands the most powerful is galK recombineering that exploits a single marker (galK) for positive and negative selection and PCR amplicons for seamless modification in the desired genome locus. Here we describe the engineering of the HSV recombinant BAC 115 by the insertion of a heterologous cassette for the expression of murine interleukin 12 (mIL12) in the intergenic sequence between US1 and US2 ORFs.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Proteínas de Escherichia coli , Escherichia coli/genética , Galactoquinase/genética , Edição de Genes , Herpesvirus Humano 1/genética , Proteínas Virais/genética , Animais , Camundongos
9.
Methods Mol Biol ; 2060: 153-168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31617177

RESUMO

In the previous chapter, we describe the engineering of a HSV-BAC genome by galK recombineering. Here we describe the procedures to reconstitute, or regenerate, the replicating recombinant virus, and the methods to purify it and characterize it for the correct expression of the transgene. We present the example of R-115, a recombinant expressing murine interleukin 12 (mIL12) from the US1-US2 intergenic region. A specific method for the production of highly purified virions by iodixanol gradient, suitable for in vivo applications, is also detailed.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Expressão Gênica , Herpesvirus Humano 1 , Interleucina-12 , Recombinação Genética , Animais , Linhagem Celular Tumoral , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Interleucina-12/biossíntese , Interleucina-12/genética , Camundongos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
10.
Oncogene ; 38(23): 4467-4479, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30755732

RESUMO

Oncolytic herpes simplex viruses are proving to be effective in clinical trials against a number of cancers. Here, R-115, an oncolytic herpes simplex virus retargeted to human erbB-2, fully virulent in its target cells, and armed with murine interleukin-12 was evaluated in a murine model of glioblastoma. We show that a single R-115 injection in established tumors resulted, in about 30% of animals, in the complete eradication of the tumor, otherwise invariably lethal. The treatment also induced a significant improvement in the overall median survival time of mice and a resistance to recurrence from the same neoplasia. Such a high degree of protection was unprecedented; it was not observed before following treatments with the commonly used, mutated/attenuated oncolytic viruses. This is the first study providing the evidence of benefits offered by a fully virulent, retargeted, and armed herpes simplex virus in the treatment of glioblastoma and paves the way for clinical translation.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imunoterapia/métodos , Terapia Viral Oncolítica/métodos , Simplexvirus/genética , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glioblastoma/metabolismo , Humanos , Subunidade p35 da Interleucina-12/metabolismo , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Recidiva Local de Neoplasia , Vírus Oncolíticos , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptor ErbB-2/metabolismo , Resultado do Tratamento
11.
Viruses ; 10(7)2018 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-29966356

RESUMO

Previously, we engineered oncolytic herpes simplex viruses (o-HSVs) retargeted to the HER2 (epidermal growth factor receptor 2) tumor cell specific receptor by the insertion of a single chain antibody (scFv) to HER2 in gD, gH, or gB. Here, the insertion of scFvs to three additional cancer targets­EGFR (epidermal growth factor receptor), EGFRvIII, and PSMA (prostate specific membrane antigen)­in gD Δ6­38 enabled the generation of specifically retargeted o-HSVs. Viable recombinants resulted from the insertion of an scFv in place of aa 6­38, but not in place of aa 61­218. Hence, only the gD N-terminus accepted all tested scFv inserts. Additionally, the insertion of mIL12 in the US1-US2 intergenic region of the HER2- or EGFRvIII-retargeted o-HSVs, and the further insertion of Gaussia Luciferase, gave rise to viable recombinants capable of secreting the cytokine and the reporter. Lastly, we engineered two known mutations in gB; they increased the ability of an HER2-retargeted recombinant to spread among murine cells. Altogether, current data show that the o-HSV carrying the aa 6­38 deletion in gD serves as a platform for the specific retargeting of o-HSV tropism to a number of human cancer targets, and the retargeted o-HSVs serve as simultaneous vectors for two molecules.


Assuntos
Expressão Gênica , Genes Reporter , Vetores Genéticos/genética , Vírus Oncolíticos/genética , Simplexvirus/genética , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ordem dos Genes , Marcação de Genes , Engenharia Genética , Glutamato Carboxipeptidase II/genética , Glutamato Carboxipeptidase II/metabolismo , Humanos , Interleucina-12/genética , Interleucina-12/metabolismo , Camundongos , Mutação , Transgenes , Tropismo Viral , Replicação Viral
12.
PLoS Pathog ; 9(1): e1003155, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23382683

RESUMO

Oncolytic viruses aim to specifically kill tumor cells. A major challenge is the effective targeting of disseminated tumors in vivo. We retargeted herpes simplex virus (HSV) tropism to HER-2 oncoprotein p185, overexpressed in ovary and breast cancers. The HER-2-retargeted R-LM249 exclusively infects and kills tumor cells expressing high levels of human HER-2. Here, we assessed the efficacy of systemically i.p. delivered R-LM249 against disseminated tumors in mouse models that recapitulate tumor spread to the peritoneum in women. The human ovarian carcinoma SK-OV-3 cells implanted intraperitoneally (i.p.) in immunodeficient Rag2⁻/⁻;Il2rg⁻/⁻ mice gave rise to a progressive peritoneal carcinomatosis which mimics the fatal condition in advanced human patients. I.p. administration of R-LM249 strongly inhibited carcinomatosis, resulting in 60% of mice free from peritoneal diffusion, and 95% reduction in the total weight of neoplastic nodules. Intraperitoneal metastases are a common outcome in breast cancer: i.p. administration of R-LM249 strongly inhibited the growth of ovarian metastases of HER-2+ MDA-MB-453 breast cells. Brain metastases were also reduced. Cumulatively, upon i.p. administration the HER-2-redirected oncolytic HSV effectively reduced the growth of ovarian and breast carcinoma disseminated to the peritoneal cavity.


Assuntos
Neoplasias da Mama/terapia , Herpesvirus Humano 1/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Neoplasias Ovarianas/terapia , Neoplasias Peritoneais/terapia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Sobrevivência Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Herpesvirus Humano 1/fisiologia , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Vírus Oncolíticos/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Neoplasias Peritoneais/mortalidade , Neoplasias Peritoneais/secundário , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Curr Opin Virol ; 2(1): 28-36, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22440963

RESUMO

Herpes simplex virus (HSV) entry into the cell involves the fusion of the virion envelope with a cellular membrane and delivery of capsid and tegument proteins to the cytoplasm. Our understanding of this phenomenon has greatly increased in recent years. On the virus side, the multipartite nature of the entry-fusion machinery (made of the glycoproteins gD, the heterodimer gH/gL and gB) entails a mechanism of gD activation promoted by the gD encounter with one of its receptor; and cross-talk among the entry-fusion glycoproteins, which culminates in gB activation and fusion execution. On the cell side, machineries and signalling activities are put in place. The number of known receptors and sentinels is increasing. The cell routes the virus through alternative entry pathways by means of routing factors, exemplified by αVß3-integrin and paired immunoglobulin-like type 2 receptor alpha. Of the signalling events, a key one is the immediate host response to incoming virions. Unexpectedly, this is in part triggered by the same virion components and some cellular factors that also promote virus entry. Hence, a link is emerging between two phenomena so far considered as distinct.


Assuntos
Herpes Simples/metabolismo , Simplexvirus/fisiologia , Internalização do Vírus , Animais , Herpes Simples/genética , Herpes Simples/virologia , Humanos , Simplexvirus/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
14.
Mol Ther ; 20(5): 994-1001, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22354378

RESUMO

Oncolytic herpes simplex viruses (HSVs) represent a novel frontier against tumors resistant to standard therapies, like glioblastoma (GBM). The oncolytic HSVs that entered clinical trials so far showed encouraging results; however, they are marred by the fact that they are highly attenuated. We engineered HSVs that maintain unimpaired lytic efficacy and specifically target cells that express tumor-specific receptors, thus limiting the cytotoxicity only to cancer cells, and leaving unharmed the neighboring tissues. We report on the safety and efficacy in a high-grade glioma (HGG) model of R-LM113, an HSV recombinant retargeted to human epidermal growth factor receptor 2 (HER2), frequently expressed in GBMs. We demonstrated that R-LM113 is safe in vivo as it does not cause encephalitis when intracranially injected in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, extremely sensitive to wild-type HSV. The efficacy of R-LM113 was assessed in a platelet-derived growth factor (PDGF)-induced infiltrative glioma model engineered to express HER2 and transplanted intracranially in adult NOD/SCID mice. Mice injected with HER2-engineered glioma cells infected with R-LM113 showed a doubled survival time compared with mice injected with uninfected cells. A doubling in survival time from the beginning of treatment was obtained also when R-LM113 was administered into already established tumors. These data demonstrate the efficacy of R-LM113 in thwarting tumor growth.


Assuntos
Neoplasias Encefálicas/terapia , Vetores Genéticos , Glioma/terapia , Terapia Viral Oncolítica/métodos , Receptor ErbB-2/genética , Simplexvirus/genética , Adulto , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Encefalite/prevenção & controle , Engenharia Genética , Glioma/genética , Glioma/mortalidade , Humanos , Injeções Intraventriculares , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Gradação de Tumores , Transplante de Neoplasias , Fator de Crescimento Derivado de Plaquetas/genética , Taxa de Sobrevida , Replicação Viral
15.
Curr Pharm Biotechnol ; 13(9): 1795-803, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21740356

RESUMO

Herpes simplex viruses (HSVs) have entered clinical trials as oncolytic agents. The following properties make them good candidates. It is a mild pathogen; drugs (Aciclovir) are available to control viral infection; the large genome is amenable to genetic engineering, they can be rendered cancer-specific by deletion of genes, envelope glycoproteins allow the insertion of heterologous ligands to achieve modification of the natural tropism. Genetically modified HSVs have been thoroughly tested in humans. New generation recombinants retargeted to cancer-specific heterologous receptors have been generated and are presently evaluated in pre-clinical settings. They will be reviewed along with the molecular bases of cancer specificity and the strategies for the enhancement of oncolytic potential of HSV recombinants.


Assuntos
Neoplasias/terapia , Neoplasias/virologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Simplexvirus/fisiologia , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo , Simplexvirus/genética , Simplexvirus/metabolismo
16.
Rev Med Virol ; 21(4): 213-26, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21626603

RESUMO

Oncolytic viruses infect, replicate in and kill cancer cells. HSV has emerged as a most promising candidate because it exerts a generally moderate pathogenicity in humans; it is amenable to attenuation and tropism retargeting; the ample genome provides space for heterologous genes; specific antiviral therapy is available in a worst case scenario. The first strategy to convert HSV into an oncolytic agent consisted in deletion of the γ(1) 34.5 gene which counteracts the protein kinase R (PKR) response, and of the UL39 gene which encodes the large ribonucleotide reductase subunit. Tumor specificity resided in low PKR activity, and high deoxyribonucleotides content of cancer cells. These highly attenuated viruses have been and presently are in clinical trials with encouraging results. The preferred route of administration has been intratumor or in tissues adjacent to resected tumors. Although the general population has a high seroprevalence of antibodies to HSV, studies in animals and humans demonstrate that prior immunity is not an obstacle to systemic routes of administration, and that oncolytic HSV (o-HSVs) do populate tumors. As the attenuated viruses undergo clinical experimentation, the research pipeline is developing novel, more potent and highly tumor-specific o-HSVs. These include viruses which overcome tumor heterogeneity in PKR level by insertion of anti-PKR genes, viruses which reinforce the host tumor clearance capacity by encoding immune cytokines (IL-12 or granulocyte-macrophage colony-stimulating factor), and non-attenuated viruses fully retargeted to tumor specific receptors. A strategy to generate o-HSVs fully retargeted to human epidermal growth factor receptor-2 (HER-2) or other cancer-specific surface receptors is detailed.


Assuntos
Herpesvirus Humano 1/genética , Vírus Oncolíticos/genética , Animais , Ensaios Clínicos como Assunto , Deleção de Genes , Engenharia Genética , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Terapia Viral Oncolítica , Receptor ErbB-2/metabolismo , Proteínas Virais/genética , Tropismo Viral/genética
18.
Proc Natl Acad Sci U S A ; 106(22): 9039-44, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19458262

RESUMO

Oncolytic virotherapy exploits the ability of viruses to infect, replicate into, and kill tumor cells. Among the viruses that entered clinical trials are HSVs. HSVs can be engineered to become tumor-specific by deletion of selected genes or retargeting to tumor-specific receptors. A clinically relevant surface molecule is HER-2, hyperexpressed in one fourth of mammary and ovary carcinomas, and associated with high metastatic ability. As a previously undescribed strategy to generate HSV recombinants retargeted to HER-2 and detargeted from natural receptors, we replaced the Ig-folded core in the receptor-binding virion glycoprotein gD with anti-HER-2 single-chain antibody. The recombinant entered cells solely via HER-2 and lysed HER-2-positive cancer cells. Because of the high specificity, its safety profile in i.p. injected mice was very high, with a LD(50) >5 x 10(8) pfu, a figure at least 10,000-fold higher than that of corresponding WT-gD carrying virus (LD(50) approximately 5 x 10(4) pfu). When administered intratumorally to nude mice bearing HER-2-hyperexpressing human tumors, it strongly inhibited progressive tumor growth. The results provide a generally applicable strategy to engineer HSV recombinants retargeted to a wide range of receptors for which a single-chain antibody is available, and show the potential for retargeted HSV to exert target-specific inhibition of human tumor growth. Therapy with HER-2-retargeted oncolytic HSV could be effective in combined or sequential protocols with monoclonal antibodies and small inhibitors, particularly in patients resistant to HER-2-targeted therapy because of alterations in HER-2 signaling pathway, or against brain metastases inaccessible to anti-HER-2 antibodies.


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Receptor ErbB-2/biossíntese , Simplexvirus/genética , Animais , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Humanos , Região Variável de Imunoglobulina/genética , Camundongos , Nectinas , Neoplasias/metabolismo , Proteínas Virais/genética
19.
J Virol ; 82(20): 10153-61, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18684832

RESUMO

A novel frontier in the treatment of tumors that are difficult to treat is oncolytic virotherapy, in which a replication-competent virus selectively infects and destroys tumor cells. Herpes simplex virus (HSV) represents a particularly attractive system. Effective retargeting to tumor-specific receptors has been achieved by insertion in gD of heterologous ligands. Previously, our laboratory generated an HSV retargeted to human epidermal growth factor receptor 2 (HER2), a receptor overexpressed in about one-third of mammary tumors and in some ovarian tumors. HER2 overexpression correlates with increased metastaticity and poor prognosis. Because HER2 has no natural ligand, the inserted ligand was a single-chain antibody to HER2. The objective of this work was to genetically engineer an HSV that selectively targets the HER2-expressing tumor cells and that has lost the ability to enter cells through the natural gD receptors, HVEM and nectin1. Detargeting from nectin1 was attempted by two different strategies, point mutations and insertion of the single-chain antibody at a site in gD different from previously described sites of insertion. We report that point mutations at gD amino acids 34, 215, 222, and 223 failed to generate a nectin1-detargeted HSV. An HSV simultaneously detargeted from nectin1 and HVEM and retargeted to HER2 was successfully engineered by moving the site of single-chain antibody insertion at residue 39, i.e., in front of the nectin1-interacting surface and not lateral to it, and by deleting amino acid residues 6 to 38. The resulting recombinant, R-LM113, entered cells and spread from cell to cell solely via HER2.


Assuntos
Herpesvirus Humano 1 , Neoplasias/metabolismo , Engenharia de Proteínas , Receptor ErbB-2/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Humanizados , Antineoplásicos/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Herpes Simples , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Nectinas , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Mutação Puntual , Receptor ErbB-2/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Trastuzumab , Tropismo
20.
Rev Med Virol ; 17(5): 313-26, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17573668

RESUMO

The multipartite entry-fusion system of herpes simplex virus is made of a quartet of glycoproteins-gD, gB, gH.gL-and three alternative gD receptors, herpesvirus entry mediator (HVEM), nectin1 and modified sites on heparan sulphate. This multipartite system recapitulates the basic steps of virus-cell fusion, i.e. receptor recognition, triggering of fusion and fusion execution. Specifically, in addition to serving as the receptor-binding glycoprotein, gD triggers fusion through a specialised domain, named pro-fusion domain (PFD), located C-terminally in the ectodomain. In the unliganded gD the C-terminal region folds around the N-terminal region, such that gD adopts a closed autoinhibited conformation. In HVEM- and nectin1-bound gD the C-terminal region is displaced (opened conformation). gD is the tool for modification of HSV tropism, through insertion of ligands to heterologous tumour-specific receptors. It is discussed whether gD responds to the interaction with the natural and the heterologous receptors by adopting similar conformations, and whether the closed-to-open switch in conformation is a generalised mechanism of activation. A peculiar recombinant highlighted that the central Ig-folded core of gD may not encode executable functions for entry and that the 219-314 aa segment may be sufficient to trigger fusion. With respect to fusion execution, gB appears to be a prospective fusogen based on its coiled-coil trimeric structure, similar to that of another fusion glycoprotein. On the other hand, gH exhibits molecular elements typical of class 1 fusion glycoproteins, in particular heptad repeats and strong tendency to interact with lipids. Whether fusion execution is carried out by gB or gH.gL, or both glycoproteins in complex or sequentially remains to be determined.


Assuntos
Simplexvirus/fisiologia , Internalização do Vírus , Glicoproteínas/química , Glicoproteínas/fisiologia , Humanos , Modelos Moleculares , Receptores Virais/fisiologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...